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This paper reviews the linear and non-linear elastic behaviour of flexible composites, which 
are based on elastomeric polymers and exhibit a usable range of deformation much larger than 
those of conventional thermosetting or thermoplastic polymer-based composites. The types of 
flexible composites examined are cord/rubber composites, coated fabrics and composites 
containing wavy fibres. The classical lamination theory forms the basis of analysing the linear 
elastic behaviour. Three analytical approaches have been developed for predicting the non- 
linear elastic behaviour. The advancement in the predicability of analytical models enhances 
the utilization of flexible composites as load-bearing structural composites. The versatility of 
flexible composites in engineering applications lies in the fact that their load-deformation 
behaviour can be tailored by suitable selection of fibre/matrix systems and the design of fibre 
geometric configuration. 

1. I n t r o d u c t i o n  
The term "flexible composites" is used here to identify 
composites based upon elastomeric polymers of which 
the usable range of deformation is much larger than 
those of the conventional thermosetting or thermo- 
plastic polymer-based composites. The ability of flex- 
ible composites to sustain large deformation and 
fatigue loading, and still provide high load-carrying 
capacity has been mainly analysed in pneumatic tyre 
and conveyor belt constructions. However, the unique 
capability of flexible composites is yet to be explored 
and investigated. The real potential of flexible com- 
posites can be assessed only if their fundamental 
characteristics are understood [1, 2]. 

Besides tyres and conveyor belts, flexible com- 
posites can be found in a wide range of applications. 
Coated (with PVC, Teflon, rubber, etc.) fabrics have 
been used for air or cable-supported building struc- 
tures, tents, parachutes, decelerators in high-speed 
aeroplanes, bullet-proof vests, tarpaulin, inflated struc- 
tures such as boats and escape slides, safety nets, and 
other inexpensive products. Hoses, flexible diaphragms, 
racket strings, surgical replacements, geotextiles, and 
reinforced membrane structures, in general, are 
examples of flexible composites. 

The purpose of this review article is to assess the 
state of knowledge in terms of modelling and predict- 
ing the elastic behaviour of flexible composites. Three 
categories of materials are examined: pneumatic tyres, 
coated fabrics, and flexible composites containing 
wavy fibres; they provide the model systems of analy- 
sis with elastic behaviour ranging from small to large 
deformations. Further justifications for the studies of 
these three systems are given below. 

The performance characteristics of pneumatic tyres 
are primarily controlled by the anisotropic properties 
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of the cord/rubber composite. The low-modulus, 
high-elongation rubber contains the air and provides 
abrasion resistance and road grip. The high-modulus, 
low-elongation cords carry most of the loads applied 
to the tyre in service [3]. According to Walter [3], the 
first quantitative study of cord/rubber elastic proper- 
ties, in the tyre industry, was published in Germany in 
1939 by Martin [4] who analysed bias-ply aircraft tyres 
using thin shell theory to approximate toroidal tyre 
behaviour. Martin's analysis of the orthotropic com- 
posite elastic constants assumes that the fibres are 
inextensible and the matrix stiffness is negligibly small; 
this approach has been referred to herein as the classi- 
cal netting analysis. Studies of the cord/rubber 
properties became active worldwide in the 1960s as 
represented by the work of Clark [5-7] in the USA, 
Gough [8, 9] in Great Britain, Akasaka [10] in Japan, 
and Biderman and co-workers [11] in the Soviet 
Union. 

It should be noted that the existing analysis on tyre 
mechanics is primarily based upon the well-developed 
anisotropic theory of rigid laminated composites for 
small linear elastic deformation. Thus, the problems 
of viscoelasticity, strength behaviour, fatigue and 
large non-linear behaviour are often ignored. 

In the case of coated fabrics, limited attention has 
been given to the material stress-strain response to 
arbitrary loading paths and histories. Experimental 
studies of the biaxial stress-strain behaviour can be 
found in the works of Alley and Fairson [12], Reind- 
hardt [13], and Skelton [14]. Attempts have also been 
made by Stubbs and Thomas [15], and Akasaka and 
Yoshida [16] to analytically model the elastic and 
inelastic properties of coated fabrics under biaxial 
loading. Some of these results are briefly recapitulated 
in this review. 
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The third and last part of this review focus on the 
understanding of the large non-linear deformation of 
flexible composites. To this end, model material sys- 
tems for analytical purpose, need to be identified. The 
large non-linear deformation could originate from 
two sources, i.e. matrix and fibre. In order to realize 
fully the ability oi ~ the elastomeric matrix to sustain 
large deformation, the fibres must be able to deform 
accordingly with the matrix. This can be achieved by 
(a) using short fibres, (b) arranging continuous fibres 
in such an orientation that they are allowed to rotate 
as the load increases, and (c) using reinforcements in 
woven, knitted, braided, or other wavy forms [1]. 

Possibility (c) is particularly interesting in that it 
utilizes the waviness of the fibres. The gradual 
straightening of the wavy fibres under external loading 
results in enhanced stiffness with increase in deforma- 
tion. The linear and non-linear elastic behaviour of 
two- and three-dimensional textile structural com- 
posites has been examined by Chou and c0-Workers 
[17-19]. However, the analYSiS was based on small 
deformation theory. Thus, in the third part of this 
paper, a review of:the non-linear finite deformation 
analysis of flexible composites is presented. 

2. Basics of anisotropic laminate theory 
The purpose of this section is briefly to outline the 
stress-strain relatiofis for laminated composites. 
These constitutive relations based on the classical 
lamination theory are the basis for some of the analy- 
sis presented in this paper. The lamination theory is a 
relatively mature subject; its treatment can be found in 
text books of, for instance, Ashton et al. [20], Vinson 
and Chou [21], Jones [22], Tsai and Hahn [23], and 
Carlsson and Pipes [24]. 

2.1. Stress-strain relations for unidirectional 
laminae 

A unidirectional lamina can be treated as an ortho- 
tropic material. Four independent constants are 
needed to specify its elastic behaviour. These con- 
stants, referring to the fibre (Xl) and transverse (x2) 
directions, are denoted by E l (longitudinal Young's 
modulus), E2 (transverse Young's modulus), vt2 
(Poisson's ratio due to loading in the x~ direction and 
contraction in the x2 direction), and G~2 (in-plane 
shear modulus). The relationship between these 
orthotropic elastic properties and the elastic proper- 
ties of the fibre and matrix materials and the fibre 
volume fraction can be found using techniques well 
developed in the composite literature. Let the isotropic 
properties of the fibre and matrix be denoted by E 
(Young's modulus), v (Poisson's ratio), G (shear 
modulus) and K (bulk modulus). Volume fractions are 
denoted by V, and the subscripts f and m indicate fibre 
and matrix, respectively. The following relations due 
to Hashin and Rosen, and reviewed by Rosen [25] are 
quoted for their concise forms and hence, ease in 
application. 

4VfVm(v f --  ym) 2 
El = Ef gf "-[- Em Vm "k- 

(VmlKf)  -I- (Vf/Km) 4- (1/Gm) 

(1) 

E2 = (4K 'G*  Kt* + G* 1 + E, }J 

YI2 = YfVf -I- v m V  m 

1 Vm Vf + E    `vf-vm C DI/(  + + 

where 

(2) 

(3) 

VmG m + (1 Av gf)Gf 
GI2 = Gm (4) 

(1 4- Vf)G m + groG f 

K i n k  f ~- (VfKf ~- gmKm)G m 
K * =  

VmKf q- VfKm --}- G m 

(~ Jr- flmgf)(1 -k- Qgf3) _ 3gfvn~flr n 2  2 

at* = a m (a Vr)(1 + r 3) 2 2 --  - -  3VfVr~flm 

(5) 

(6) 

= (~ -~- flm)/(~ -- 1) (7) 

fi = 1/(3 -- 4y) (8) 

~" (tim -- 7 t r ) / (  1 + 7t r )  (9) 

= a f / a  m ([0)  

It should be noted that Equations 1 to 10 are actually 
for a unidirectional composite treated as a three- 
dimensional, transversely isotropic material. Five 
independent elastic constants are needed to describe 
such properties. K ' a n d  G* in Equations 5 and 6 a r e  
respectively, the transverse plane-strain bulk modulus 
and transverse shear modulus, of the unidirectional 
composite. For completeness, the transverse Poisson's 
ratio is given by 

vt* = ~ ~*t* - 1  (11) 

The strain-stress relations for the unidirectional 
lamina in a plane stress state, referring to the Xl-X2 
plane, is given by 

() ,o' ~212 0 $66 1712 

(12) 

Here, e and a denote the normal strain and stress 
components, respectively; 7 and z are the shear strain 
and stress, respectively. Again, x~ and x2 refer to 
the fibre and transverse directions, respectively. The 
elastic compliance constants Sij in Equation 12 can be 
expressed in terms of the unidirectional lamina prop- 
erties (often referred to as the engineering constants). 

1 1 
Sli = - -  $22 = - -  (13) 

E~ E2 

$12 - vl2 - v21 (14) 
E~ E2 

1 
866 -- (15) 

G~2 

Obviously the reciprocity of S~2 holds. Four indepen- 
dent constants appear in Equation 1 2 and the lamina 
is termed especially orthotropic. 
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Figure 1 Fibre axis at an angle 0 from the lamina reference axis. 

Equation 12 can be inverted to obtain the stress- 
strain relations. (0"1 t ~0/QII QI2 00 tQGl t 

"~I2 0 Q66 ];12 

(16) 

where the Q~ are known as the reduced stiffness, and 
are related to the engineering constants of the uni- 
directional lamina as follows 

El 
Q~E - ( 1 7 )  

1 -- 'd12V21 

v12E2 v21Ei 
Q12 - - (18) 

1 - v12v21 1 - -  YI2Y21 

G Q22 - (19) 
1 -- YI2Y21 

Q66 = G12 (20) 

It is worth noting that the engineering constants can 
also be expressed in terms of the reduced stiffness as 

Q~2 
E1 = Q t l - -  (21) 

Q= 

Q~2 
E2 = (22) Q 22 -- - -  

Q12 (23) V12 -- Q22 

Gl2 = Q66 (24) 

For a unidirectional lamina situated at an angle 0 
with respect to the reference axes x - y  (Fig. 1), the 

1 
stress-strain relations in the x - y  coordinates are 

E,. 

O'v = [QI2 Q22 Q26]~C)' ) (25) 

z \Q~6 Q26 Q66 / \7,,,/ 
%, = E• 

where Qo, the transformed reduced stiffnesses, are 
given by 

Qll = Qll cos40 + 2(Qi2 + 2Q66)sin20 cos20 

+ Q22 sin40 (26) 1 

Q12 = (Q~t + Q22 - 4Q66) sin20 cos20 E~. 

+ Q12(sin40 + COS40) (27) 

Q22 = QJl sin 40 + 2(Qi2 + 2Q66) sin20 cor 
1 

+ Q22 COS40 (28) G.vv - 

QI6 = (Qll - Q i 2 -  2Q66) sin0cos30 

+ (Qi2 - Q22 + 2Q66) sin30 cos 0 (29)  

Q26 = (Qll - Q12 -- 2Q66) sin30 cos 0 

+ (Q12 - Q22 + 2Q66) sin 0 cos30 (30) 

066 = (Qll + Q22 - 2QI2 - 2Q66)sin20 cos20 

+ Q66(sin40 + cos40) (31) 

The unidirectional lamina referred to the x - y  axes is 
termed generally orthotropic. 

Equation 25 can be inverted to obtain the strain- 
stress relations in the following general form 

'~xy \S16 89-6 $66/ 27.xqv 

(32) 

in which the Sij are the transformed compliance con- 
stants and their relation to Sij and 0 are 

$II = 811cos40 + (2812 + 866) sin 2 0 c 0 r  

-~- 822 sin40 (33) 

&2 = Sl2(sin 40 + cos40) 

+ (Su + S= - $66)sin20 cos20 (34) 

S= = Nj~ sin40 + (28t2 + 866 ) sin 2 0 cos2 0 

+ S= cos40 (35) 

S16 = (28,1 - 2SI2 - $66) sin 0 cos30 

- (2S22 - 2S~2 - &~,) sin30 cos 0 (36) 

826 = (2SII -- 2S,2 - 366 ) sin30 cos 0 

- (2S22 - 2Sj2 - $66) sin 0 cos30 (37) 

$66 = 2(2&1 + 2S22 - 4S~2 - $66)sin20 cos20 

+ S66(sin40 + COS40) (38) 

The engineering constants of the unidirectional 
lamina referring to the x - y  axes, which are not 
aligned with the material principal directions, can be 
expressed as functions of the off-axis angle, 0, by using 
Equations 13 to 15 and 33 to 38 

(39) 

(40) 

1 cos40 + ( 1 2vl2~ 
El G~2 El ] sin20 c~ 

1 
+ ~ sin40 

( v~2 (sin40 + c0r 
El 

co  0)   )sin 0 
1 2v,2) 1 sin40 + sin20 E, G~2 ~ ] c~ 

1 
-~ E22 COS40 

2 2 4Vl2 1 ) 
2 ~l  + ~ +  E, <2 sin20 

(41) 

COS 20 

(42) 
1 

+ 7- (s in40  + c o s 4 0 )  
%2 
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Figure 2 An n-layered laminate. 
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2.2. Classical lamination theory 
Based upon the constitutive relations for a lamina 
composed of a generally orthotropic material, 
Equation 25, the constitutive relations for a laminate 
formed by bonding several laminae together is pre- 
sented in this section. The orientation and material 
system of each lamina are general. Fig. 2 depicts the 
geometry of an n-layered laminate of thickness h; the 
x-y plane coincides with the laminate geometric 
middle plane. Following the approach of the classical, 
linear, thin-plate theory, the following assumptions 
are made [21]. 

1. A lineal element of the plate extending through 
the plate thickness, normal to the middle surface 
(x-y plane) in the unstressed state, upon the applica- 
tion of load: (a) undergoes at most a translation and 
a rotation with respect to the original coordinate sys- 
tem, and (b) remains normal to the deformed middle 
surface. This assumption implies that the lineal ele- 
ment does not elongate or contract, and remains 
straight upon load applications. 

2. The plate resists lateral and in-plane loads by 
bending, transverse shear stress, and in-plane action, 
not through block-like compression or tension in the 
plate in the thickness direction. 

Based upon the foregoing assumptions, also known 
as the Kirchhoff hypothesis for plates, the strain corn- 
ponents can be derived 

(43) 

0 0 0 Here, ~x, %; and ~xy are the laminate middle plane 
strain, which are expressed in terms of the middle 

plane displacements u0 and Vo 

o &uo o ~Vo dUo 0% 
~x = ex'  ~" = - ~ y '  y x ~ -  Oy + ~x 

(44) 
The middle plane curvatures are related to the 
z-direction middle plane displacement, wo 

82 Wo 02 Wo 02 Wo 
/s -- ~X 2 , K~y -- Kxy = 2 Oy 2 ' 8xOy 

(45) 
Note that Xxy represents the twist curvature of the 
middle plane. Fig. 3 depicts the deformation associ- 
ated with a typical cross-sectional element in a thin 
plate. 

Also, following the approach of the classical plate 
theory, the resultant forces and moments, instead of 
the stresses, are utilized in the consitutive relations. 
Referring to Figs. 4a and b, the force and moment 
resultants of the laminate are obtained by integrating 
the stresses of each lamina, through the laminate 
thickness, h 

(N~, Ny, Nx~) = fhl2 (ax, ay, ~xy) dz (46) 
- J - h/2 

(Mx, Mv, M~) = fhi2 (ax, av, :xv) zdz (47) 
- " J -  hi2 - " 

Substitution of Equations 25 and 26 to 31 into 
Equations 43 and 44 results in the following 

N~c) IAll AI2 Al6~/l~7' / 

N,V \ Ai6 A26 A66 / \~Oy / 

(BII BI2 Bl6 ti/~x 1 
-~ /g12  B22 B26]tl~yl (48) 

t g l 6  B26 g66i\Xxyl 'Mx) /BIIBI2BI6tIF<'~~ 
M y  = /B,2 B22 zl 6j/: / 
,Mry \BI6 B:6 B66/\y~ 

( O i l  012 O l 6 1 1 ~ x l  

+ / D i 2  D22 D26]tKy ) (49) 

\Di6 D26 D66i\ tgxyl  

T7 <As 
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~o ~[ 
v I 
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Figure 3 Deformation of a typical cross-sectional ele- 
ment in a thin laminated plate. 
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Figure 4 (a) In-plane force resultants. (b) In-plane moment resultants. 

where 

AU = ~ (Qij)k(zl, - zk-l)  (50) 
k=l 

n 

B U = ~ k~=, (Qij),(z~ - z~ 1) (51) 

1 ~ (Qij)k(z3k _ z3_, ) 
D,j = 3 k=, (52) 

In Equations 48 to 52, the Aij, Bij and D,j are called 
extensional stiffness, extension-bending coupling stiff- 
ness, and bending stiffness, respectively. The summa- 
tion in Equations 50 to 52 is carried out over all the 
laminae: (Oij)k refers to the reduced stiffness of the 
kth layer. In general, each stiffness matrix has nine 
components; these components can be simplified 
through a judicious selection of the orientation and 
location along the z-axis of the individual laminae 
composing the laminate [20, 21]. 

3. Cord/rubber composites 
Cord/rubber composites for pneumatic tyres are 
examined in this section from the viewpoint of the 
mechanics of anisotropic materials. Cord/rubber com- 
posites are complex elastomeric composites composed 
of (a) the rubber matrix of usually quite low modulus 
and high extensibility, (b) the reinforcing cord of 
much higher modulus and lower extensibility than the 
matrix, and (c) the adhesive film which bonds the cord 
to the matrix. The combination is subjected to (a) 
fluctuating loads, mostly tensile but on occasion com- 
pressive, (b) temperature as high as 125 ~ C, and(c)  
moisture. Obviously substantial stress develops at 
the cord-rubber interface. Some of the discussions 

z ~  //vlx [~ Mxy 
- ,,~x 

b 

presented here on the materials and mechanics aspects 
of pneumatic tyres are based upon the review articles 
of Walter [3] and Clark [26]. 

The construction of a tyre involves calendering 
sheets of rubber around an array of parallel textile 
cords to form a flat, essentially two-dimensional 
anisotropic sheet. The cords usually have substantial 
twist and often are made up of two or three oppositely 
twisted yarns. These composite sheets are then 
assembled into various tyre configurations. Fig. 5a 
shows the typical bias or angle-ply design which 
utilizes two or more, usually an even number, of plies 
laid at alternate diagonal angles to one another. 
Fig. 5b depicts a typical radial tyre construction con- 
sisting of a single-ply structure involving radially 
oriented cords while the tread area is reinforced by a 
belt structure of relatively small angle with respect to 
the tyre centre line. The radial tyre construction 
provides stiff longitudinal reinforcement for the tread 
area (and hence, is less subject to slip), and flexibility 
for the vertical deflection [26]. In the terminology of 
laminated composites, bias and radial tyres can be 
categorized as laminates with [+ 0 / -  0] and [+ 0 /0 / -  0] 
orientations with respect to the tyre centre line. 

3.1. Rubber  and cord propert ies  
For relatively small strain, rubber may be treated as a 
homogeneous and isotropic material. The Young's 
modulus, determined from the initial slope of the 
stress-strain curve, may be as low as 0.69 MPa (100 
psi) for non-reinforced (unfilled) elastomers to as high 
as 689 MPa (100000 psi) for highly vulcanized (high 
sulphur) compounds such as ebonite. The Young's 
modulus of rubber is affected by the conditions of 
physical testing (i.e. strain rate, temperature, cyclic 

Figure 5 (a) Bias-ply tyre, after [26]. (b) Radial-ply tyre, after [26]. 
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load history) and chemical vulcanization parameters 
(i.e. the compounding ingredients, state of cure) [26]. 

The assumption of negligible volume change of 
rubber, leads to v ~- 1/2, K z, ~ ,  and E ~ -3G.  
Rubbers used in calendered plies of tyres have E values 
of 5.51 MPa (800 psi) for textile body ply, 20.67 MPa 
(3000 psi) for textile tread ply and 13.78 MPa (2000 psi) 

for steel tread ply. The v value for these materials is 
0.49. 

The Young's moduli for tyre cords vary with cord 
constructions. The following values are for belt-ply: 
109.55GPa (15.9 • 106psi) for steel, 24.8GPa 
(3.6 • 106psi) for Kevlar, and l l .02GPa (1.6 x 10 6 

psi) for rayon. The values for body-ply are: 3.96 GPa 
(575 x 103 psi) for polyester, and 3.45GPa (500 • 
103 psi), for nylon. Experiments have shown that tex- 
tile cords can carry some load in compression, although 
compressive loads are believed to be the source of 
many textile failures and should be avoided whenever 
possible [25]. 

Twisting of the cord is needed in order to pro- 
vide adequate cord fatigue life under service con- 
ditions. However, twisting of  fibre into tyre cord 
can result in as much as a one-third decrease in 
tensile Young's modulus, for belt-ply cords and a 
one-half decrease in Young's modulus for body-ply 
cord. It has been predicted that the axial Young's 
modulus of a single twisted fibre yarn is approximately 
equal to 1/(1 + 4~2R2T 2) of that of the untwisted 
yarn. Here R and T denote yarn radius and the twist 
(number of turns per unit length), respectively [27]. 
The twisted and multi-plied cords should be con- 
sidered as transversely isotropic, although they are 
commonly approximated as isotropic. Textile cords 
normally show substantial non-linearity in their 
stress-strain behaviour. However, because the rubber 
behaviour is relatively elastic in the small strain range, 
and the cords in a laminate are often aligned at an 
angle to the load direction, the composite acts more 
like a linearly elastic solid than the cord itself [26]. 
Fig. 6 shows the stress-strain curve of a tubular 
specimen using rayon yarn in a rubber matrix [26]. 
The fibres in this specimen are in angle-ply arrange- 
ment. According to Clark, most pneumatic tyres do 
not operate with strain much in excess of 10%. 

3.2. Unidirectional cord/rubber composite 
Adkins and Rivlin [28] first presented the analysis of 
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Figure 6 Load-strain curve of a cylindrical tube with rayon yarns in 
a rubber matrix, after [26]. 

a thin sheet containing a double layer of cords subjec- 
ted to a pure homogeneous strain. The matrix material 
is assumed to be isotropic and incompressible and the 
cords are thin, flexible and inextensible. 

The linear elastic behaviour of a unidirectional 
cord/rubber composite can be easily deduced from the 
basic equations given in Section 2.1. By assuming that 
Ef ~> Era, and Vm ~-- 0.5, Akasaka [29] obtained the 
following approximations 

El "~ EfVf ~ E2 (53) 

4Em 
E2 -~ - -  (54) 

3Vm 

v2, ~- O, (55) 

Gm E2 
- -  - -  - -  ( 5 6 )  

Gl2 -- Vm 4 

Akasaka [29] has noted that the expression of Gi2 ~-- 
s is independent of  cord volume fraction and has 
good predicability as compared to existing formulae 
and experimental results [30, 31]. 

It should also be noted that using the assumptions 
of Er >> Era, and Ym ~ 0.5,  Equations 2 and 4 yields 
the following results: 

(1 4- 1.3Vr)Em 
E2 = (57) 

(1 4- 0.5Wf) W m 

Gm 
G,2 = -~m (1 4- Fr) (58) 

and Gl2 is not independent of cord volume fraction. 
Also, if the unidirectional composite is approximated 
as cord and rubber components loaded in series or in 
parallel [22], predictions different from Equations 53 
to 56 are obtained 

Em 
E2 ~- - -  (59) 

Vm 

Gm E2 (60) 

Based upon Equations 53 to 60, the variation of 
lamina transformed reduced stiffness with cord off- 
axis angle, 0, follows from Equations 26 to 31 and can 
be approximated as [32] 

Qu ~ E2 4- E1 cos 40 (61) 

Q22 -~ E2 + El sin40 (62) 

Q66 ~- E2/4 + E1 sin20 cos20 (63) 

QI2 ~- E2/2 + E1 sin20 cos20 (64) 

Qi6 ~- E1 sin 0 cos30 (65) 

Q26 -~ El sin 3 0 cos 0 (66) 

When a unidirectional cord/rubber sheet is subjec- 
ted to simple tension, an interesting deformation 
behaviour occurs, which is not observed in rigid com- 
posites [29]. This can be elucidated by using Equation 
32 for the relation between Yxy and the applied cr x as 
well as the approximations of Equations 53 to 60 

- 2  sin 0 cos30 
7xy = S16~rx -~ E2 (2-tan20)ax (67) 
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Thus, the stretching-shear coupling vanishes at 
0 ~- 54.7 ~ and 7,r < 0 for 0 < 54.7 ~ and ~,r > 0 for 
0 > 54.7 ~ The positive 0 direction is defined in Fig. 5. 

3.3. Laminated cord/rubber composites 
The simple case of laminated composite in the form of 
a [+  0 / -  0] angle-ply was first examined by Clark [32]. 
Obviously, from Equations 48 and 50 the A,j matrix 
components (divided by the ply thickness h) can be 

expressed as 

Ql, (0) -t- Q,, ( - -  0) 

2Ai;/h = 0 

0 

Q,2(O) + Ql2(-O) 

Q22(0) + Q22(-0) 

0 

is noted that the maximum values of v v of a nylon-  
rubber system are attained for 0 ~ 20 ~ in both 1-ply 
(v,, ~ 1) and 4-ply (vx,. = 4) constructions. The sig- 
nificant Poisson mismatch for cord angle 0 between 
40 ~ and 5 ~ indicates a source of interlaminar stress 
between the body and belt of a radial tyre. 

Because of the incompressibility of the rubber 
matrix and the relatively small volume change associ- 
ated with the cord materials, due to its high stiffness, 

0 ) 
0 

Q66(0) + Q66(-0) 

(68) 

The Aij matrix (divided by the ply thickness) of 
Equation 68 and the Q,) matrix of Equation 16 are of 
the same general form. Thus, the engineering elastic 
constants, referring to the x - y  coordinate system, for 
the angle-ply laminated composite can be deduced in 
the same manner as those given by Equations 21 to 24. 
Using the results of Equations 53 to 56 and 61 to 66, 
the following expressions of  engineering elastic con- 
stants are obtained. 

E,- : ErVf cos40 + 4Gm/(l - Vf) 

- [ErVf sin20 cos20 + 2Gm/(1 - Vf)]2/ 

[ErVrsin40 + 4Gm/(1 - Vf)] (69) 

E,  = E~(rc/2 - O) (70) 

Gx. ,, = ErV r sin20 cos20 + Gin/(1 - V~) (71) 

% = [ErVf sin20 cos20 + 2Gin/(1 - V0]/ 

[EfVf sing0 + 4Gm/(1 - gf)] (72) 

v,.x = vxy(~/2 - O) (73) 

The approach for obtaining Equations 69 to 73 
based upon the assumptions of + 0 cord angles and 
especially orthotropic symmetry is known as the 
modified netting analysis. Walter [3] obtained expres- 
sions similar to Equations 69 to 73, with slight vari- 
ations in the approximation for G~2. 

The classical netting analysis which assumes inex- 
tensible cords (Er ~ oe) simplifies Equations 69 to 73 

E,, = 4Gin(1 - gf)(cot40 - cot20 + 1) (74) 

E~ = E~(=/2 - O) (75) 

Gxy = EfV~ sin20 cos20 + Gm(1 - Vf) (76) 

v.,,y = cot20 (77) 

vyx = tan20 (78) 

Figs 7 to 9 show the results of  analytical predictions 
based upon Equation 68 for E~, G~y, and Vxy, respec- 
tively, as functions of the off-axis angle, 0. These 
results coincide very well with the experimental data, 
also reported by Clark [32] and based upon E1 = 
1440 MPa and E2 = 6.9 MPa. It is evident that 
Poisson's ratios well in excess of one-half exist in 
cord-rubber composites. 

Walter [3] compared the variations of Ex, G~y and 
Vxy with cord orientation for 1- and 4-ply laminates. It 

it can be assumed that the cord/rubber composite is 
incompressible. Thus, for small strain, e x + e, + 
~: = 0, and 

v~- - e=/e, = 1 + ey/~x = 1 - % (79) 

Fig. 10 indicates the analytical results of Equation 79 
and experimental data of vx: as a function of 0 [28] for 
El = 294 MPa and E2 = 6.6 MPa. One of  the solid 
lines is based upon Equation 72 and the simplifying 
expressions of Equations 53 to 56 namely 

E1 sin20 cos20 + E2/2 

v~v = E1 sin40 + E2 (80) 

The other solid line is based upon Equation 77. It is 
interesting to note that for a range of 0 values, v~: is 
negative; the laminate becomes thicker under axial 
load. 

The lamination theory introduced in this review 
does not take into account the interlaminar stresses a:, 
r= and %.  These stresses and their corresponding 
strains do exist in appreciable magnitude which 
promote a reduction in the apparent stiffness of cord-  
rubber laminates. As a result, the composite becomes 
more flexible and exhibits lower natural frequencies of 
vibration and static buckling loads [3]. 

The analytical treatment of interlaminar stresses 
has been discussed by Vinson and Chou [21], Walter 
[3] reviewed the work of Kelsey, who considered a 
two-ply + 0  cord-rubber  laminate, simulating the 
behaviour of the belt in a radial tyre. Assuming the 
belt of finite width in the y direction is loaded in the 
x direction, q/~,_~ vanishes due to symmetry and e~ is 
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Figure 7 Young's modulus E,. plotted against cord angle 0 for a 
two-ply laminate [33]. ( ) Equation 69, (x) experimental data. 

767 



0.4 

0.3 

0.2 

0.1 

0.0  
0 15 30  45  60 75 90  

o3 
13.. 

;> 

ii 
0 

-1 

-2 

-3 
0 15 30  45  60 75  90 

Angle (deg) 

Figure 8 Shear modulus G~y plotted against cord angle 0 for a 
two-ply laminate [33]. ( ) Equation 71, (x) experimental data. 

assumed to be negligibly small. 7xz is maximum at the 
free edge of the belt and can be approximated, for the 
case of inextensible cords (Er ~ ~ ) ,  by the simple 
expression 

Yxz = ex(2 co t20  - -  1) (81) 

Equation 81 indicates that Y~z vanishes when the two 
plies are oriented at 0 = ___ cot -1 1/2 = + 54.7 ~ The 
magnitude of Yx~ decays exponentially away from the 
free edge and vanishes along the belt centreline 
(y = 0); also it is of opposite sign at each belt edge. It 
is interesting to note that 0 = 54.7 ~ is also the angle 
for which the normal stress and shear strain are 
uncoupled and each off-axis ply behaves as especially 
orthotropic. 

Interlaminar shear strains have been observed by 
inserting straight pins normal to the ply surface in a 
cord-rubber belt system and observing its rotation 
under extensional load [34] or by scribing a straight 
line on the edge of the specimen and monitoring the 
rotation of line under load. Fig. 11 shows the inter- 
laminar shear strain measured by X-ray technique for 
a twoTply polyester-rubber as a function of cord angle 
0 [35]. The solid line is based upon the predictions of 
Equation 82. The importance of interlaminar shear 
decreases as the number of ply increases. 

Walter [3] has presented values of the 18 elastic 
constants of Au, B~j and D 0 for bias, belted-bias and 
radial ply constructions; the material combinations of 
nylon and raylon body plies with steel, PVA and 
rayon belt plies are included. 

For the case of a specially orthotropic laminate 
(A16 , A26 , O16 , 026 , B U = 0) with respect to the x - y  
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2 
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Figure 9 Poisson's ratio v.~y plotted against cord angle 0 for a two- 
ply laminate [33]. ( ) Equation 72, (x) experimental data. 

Angle ( deg )  

Figure 10 Poisson's ratio v.~ plotted against cord angle 0 for a 
two-ply laminate [29]. Based on Equations 77 and 81, (x) experi- 
mental data. 

axes, the out-of-plane flexural rigidities are 

(EI)x = Auh2/12 = Eih3/12(1 - -  VxyVyx) (82) 

(EI)y = A22h2/12 = E2h3/12(1 - vyxVxv) (83) 

where h denotes ply thickness. 

3.4. Remarks  on cord  loads  in tyres  
According to Clark [26] the key to good tyre design is 
long fatigue life. The loads on typical textile cords in 
pneumatic tyres are extremely complex and the sources 
of loads can be identified as follows: (a) inflation load, 
(b) vertical load, (c) steering forces, (d) road irregu- 
larities, (e) camber, (f) speed, and (g) torque. 

The tensile cord load due to inflation pressure can 
be predicted with some certainty by considering the 
axisymmetric nature of inflation and approximating 
the tyre geometry as a thin toroidal shell. However, 
this task is complicated by the fact that the tyre does 
not maintain a constant geometry during inflation. 
Furthermore, the membrane forces obtained from the 
thin shell analysis may not adequately represent the 
force distributions in the bead and tread regions. 
Fig. 12 shows schematically the cross-section of a 
pneumatic tyre and the designation of the locations 
[26]. 

The measurement of cord loads is important to the 
analysis and design of tyres. Various techniques have 
been employed; these include the use of grid or elonga- 
tion marks for outer plies, X-ray photography relying 
on metal markers for inner plies, and resistance foil 
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Figure 11 Interlaminar shear strain ?x., plotted against cord angle 0 
for a two-ply polyester rubber. ( ) Equation 82, (x) experimental 
data [35]. 
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Figure 12 Location description in a cord/rubber pneumatic tyre, 
after [26]. 

strain gauges embedded in the tyre for direct cord load 
measurement in a tyre under operating conditions. 
The force transducers using resistance foil strain 
gauges are much smaller than the clip gauges, the 
rubber-wire gauges, or the liquid metal gauges. 
Details of these measurement techniques can be found 
in [36-39]. 

The measurements of tyre cord loads have indicated 
that the loads induced by normal direct inflation 
account for about 10 to 15% of cord strength. Another 
simple type of cord load is induced due to the load 
carried by the tyre. The cord load at a given location 
can fluctuate fairly widely as the tyre rolls. These 
fluctuations occur, for instance, in the crown region of 
a bias-ply tyre and the load is lessened as the tyre cord 
rolls through the tyre contact patch. The typical cord 
load cycle varies with the locations on the tyre, i.e. 
crown, sidewall or shoulder region. Steering induces 
additional loads. Relatively small amounts of steer 
could induce very large increases in the cord loads. 
Fig. 13 shows the basic characteristics of cord load 
fluctuation in a rolling tyre [26]. It should be noted 
that compressive cord loads are possible. The charac- 
teristics of other cord loads due to road irregularities, 
speed and torque are even more difficult to quantify in 
a systematic manner. 

The measurement of tyre cord loads provides the 
basis of analysis of the response of cord/rubber com- 
posites to the specified boundary conditions. The net 
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inflation ~ m i n  c cord load 
�9 o r d  
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P o s i t i o n  

Figure 13 Basic characteristics of cord load fluctuation in a rolling 
tyre, after [26]. 

theory, which only takes into account the deformation 
of the cord and neglects completely the contribution 
of the matrix rubber, was adopted in the earlier 
research of bias constructions. The uncertainty of the 
orientation of the cord in the net structure at different 
stress levels of inflation has limited the applicability of 
this theory. 

The theory of laminated composite has undoubtedly 
provided an efficient means of analysis of cord/rubber 
composites. It is understood that the theory has its 
limitations for the following reasons. 

1. Textile cord strains of several per cent could 
develop at some locations in the tyre; even larger and 
non-linear strains could develop in the rubber. 

2. Interlaminar deformations are not taken into 
account in the theory, assuming plane stress condition. 

3. Cord/rub.ber composites usually exhibit bimodu- 
lus behaviour [40, 41]. 

4. The viscoelastic behaviour is assumed to be small 
and often neglected in the analysis. 

5. Perfect cord/rubber interfacial bonds are assumed. 
6. The membrane forces in the bead and tread 

regions may be very complex. 
7. Fatigue and hygrothermal loadings may also 

complicate the problem. 
However, in spite of its limitations, the lamination 

theory has been applied with some success for inves- 
tigating a number of tyre mechanics problems includ- 
ing stress analysis, obstacle enveloping, treadwear, 
vibration and ply steer [3]. It is thus an efficient tool 
based upon linearly elastic, homogeneous and aniso- 
tropic material properties for the representation 
of non-linear viscoelastic, heterogeneous calendered 
plies of cord/rubber tyre composites [3]. The large 
non-linear deformation of flexible composites is 
treated in Section 5. 

4. C o a t e d  f a b r i c s  
Coated fabrics used in a load-bearing environment, 
for instance, those for air- or cable-supported building 
structures, tents, and inflated structures such as escape 
slides, must exhibit specific mechanical properties. 
Some of the general requirements include retaining 
flexibility over a wide temperature range, sufficient 
tensile and tear strength, low air permeability, and 
sufficient dimensional stability [14]. 

It has been recognized that coated fabrics generally 
exhibit nonlinear stress-strain behaviour due to the 
straightening of the crimped yarns under uniaxial or 
biaxial tension. As noted by Akasaka [29], the micro- 
scopic deformation behaviour of the woven yarns 
embedded in the matrix and subjected to membrane 
loading is very complex. Thus, modelling of the 
strength behaviour of these materials requires reason- 
ably precise knowledge of the deformation of the yarns 
as a function of load configuration and magnitude. 

The linear elastic properties of laminates composed 
of coated fabrics can be readily derived based upon 
the lamination theory of Section 2. Akasaka and 
Yoshida [16] presented explicit expressions for elastic 
moduli of laminates of coated fabrics; the analytical 
predictions were compared with experimental data of 
laminate of canvas. 
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Skelton [14], among others, reported the biaxial 
stress-strain behaviour of coated orthogonal fabrics. 
It is concluded that the stress-strain response at 
various stages of manufacture of coated fabrics is 
dependent mainly on the crimp in the two sets of 
yarns. The balance of crimp is determined by the 
restraints imposed on the fabric during the heat setting 
process, which precedes the coating operation. If the 
fabric is set under tension in the warp direction, the 
warp yarns tend to become straight and the yarns in 
the filling direction become highly crimped. Thus, 

140 
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,'~ 80 
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6O 

F L  

Figure 14 (a) A section of  the fabric along warp yarns in off-loom 
(top), heat set (middle) and coated (bottom) states [14]. (b) A section 
of  the fabric along filling yarns in off-loom (top), heat set (middle) 
and coated (bottom) states [14]. (c) Surface feature of  the fabric in 
heat set state [14]. 

when such a fabric is subjected to biaxial loading, it is 
almost inextensible in the warp direction. Conse- 
quently, Skelton concluded that if a balanced fabric is 
required with similar biaxial tensile behaviour in the 
warp and the filling directions, the fabric must be heat 
set with both warp and filling directions under restraint. 

It is interesting to recapitulate the experimental 
observations of Skelton [14] for the biaxial testing of 
coated fabrics. Figs 14a and b show, respectively, the 
section views of a plain weave fabric based upon high 
tenacity polyester. Because the fabric is set under 
tension along the warp direction during heat setting, 
the warp crimp is minimum and the filling crimp is 
relatively high. Three stages, i.e. off-loom, heat set and 
coated state, are demonstrated. Fig. 14c shows the 
surface features of the fabric in heat set state. 

Fig. 15 shows the biaxial load-elongation curves for 
this fabric with load ratio (warp/filling) = 1:2. The 
biaxial behaviour can be understood by bearing in 
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Figure 15 Biaxial load-elongation curves for a fabric; load 
ratio (warp/f i l l )= 1:2. WL = warp direction, loom 
state, FL = filling direction, loom state, W H  = warp 
direction, heat set, FH = filling direction, heat set, WC = 
warp direction, coated, FC = filling direction, coated 
[14]. 



mind that in the heat set state the crimp is unbalanced; 
the warp yarns are essentially straight and the filling 
yarns are highly crimped. Thus, according to Skelton, 
the extension of the highly crimped direction of the 
filling yarns, brings about an increase in crimp and 
reduction in width in the warp direction, in spite of the 
applied load in that direction. Consequently, the 
load-elongation curve shows negative elongation in 
the warp direction at low load level. 

The elastic and inelastic response of coated fabrics 
has been studied by Stubbs and Thomas [15] using a 
space truss model. The model is capable to account for 
arbitrary loading sequences. 

5. N o n - l i n e a r  e las t ic  b e h a v i o u r  - 
i n c r e m e n t a l  ana lys is  

The flexible composites discussed in this section are 
also composed of continuous fibres in an elastomeric 
matrix. Because of the low shear modulus of the 
matrix and the highly anisotropic nature (E~ > E2) of 
the composites, their effective elastic properties are 
very sensitive to the fibre orientation. The geometric 
non-linearity of the flexible composite is mainly 
caused by the reorientation of fibres. The material 
non-linearity is also pronounced in elastomeric com- 
posites under large deformation. 

The finite deformation and non-linear elastic behav- 
iour of flexible composites are examined using two 
approaches. In this section, the work of Chou and 
Takahashi [1] is recapitulated. The non-linear con- 
stitutive relation is predicted based upon a step-wise 
incremental analysis and the classical lamination 
theory. Both fibre geometric non-linearity and matrix 
material non-linearity have been taken into account. 
Because of the superposition of the infinitesimal solu- 
tions from lamination theory, the limitation of this 
approach is obvious. However, being a well-established 
analytical technique in the composites field, the 
lamination theory does provide a convenient tool 
for discerning the basic characteristics of flexible 
composites. 

In the second approach presented in Section 6, a 
mathematical model of the constitutive relation is 
established based upon the Eulerian description of the 
deformation to account for the material non-linearity, 
including stretching-shear coupling. 

Comparisons are made between the analytical 
predictions of these two approaches and experimental 
data for tyre cord/rubber and carbon and Kevlar/ 
silicone-elastomer flexible composite laminae, Because 
composites with fibres in wavy form have been used as 
a model system, the geometric aspects of curved fibres 
are presented first. 

5.1. Geometry of curved fibres 
To demonstrate the effect of fibre extensibility from 
geometric design, a flexible composite composed of 
continuous fibres with sinusoidal waviness in a ductile 
matrix is studied. Perfect bonding between the fibres 
and matrix is assumed. The geometric relations 
between the wavelength (2), amplitude (a), and fibre 
length (s) of a sinusoidal-shaped fibre are identified 
first. Then, two types of fibre arrangement are con- 

sidered: the iso-phase model, and the random-phase 
model. The fibres are assumed to maintain the sinu- 
soidal shape of which the geometric parameters 2, a 
and s vary with the increase of the applied load. 

The spatial position of a typical fibre in the xyz  
coordinates is given by 

2~rx 
y = a sin ~ -  (84) 

where the parameters a and 2 of the curved fibre are 
shown in Fig. 16. The angle (0) between the tangent to 
the fibre and the x-axis is a function of x. 

dy 2rca 2~x 
t a n 0  - dx 2 cos 2 (85) 

The length of fibre, ds, between x and x + dx is 

ds = (dx  2 q- dy2)  1;2 

[ (2~x~]  '/2 (86) = dx 1 ~- C COS 2 ~ 2 J J  

where c = (27ca/2) 2. Obviously, the maximum value 
of tan 0 occurs at 

10maxI = tan l ( ~ _ a )  (87) 

The fibre length, s, between x = 0 and 2 is given by 

= f ds  s 

2 [2~ 
= ~ J0 (1 + c cos2/? '/2 dfl) (88) 

By the use of elliptic integral of the second kind 

s = 2(1 + c) '/2 

1 k2 123 
x I - ~ - 224- ~ 

k 4 - 12325 k6 . . . .  "] 
224262 / 

(89) 

where k 2 = c/(1 + c). Equation 89 can be written as 

, , 
2 - (1 - k2) In 1 - 2 - 3 

4 4 ,  

(90) 

By the use of Taylor expansion, we have 

= 1 + 2  + 13 + 9 0  

In the following analysis, terms up to (k2/8) 5 are 
taken into account in Equation 91 and the range of a/2 
is limited to below 1/5. The relationship between a/2 
and s/2 is shown in Fig. 16 where 0m,x is the maximum 
angle between the fibre and the x-axis. For example, 
for 0m~ x = 20 ~ , a/2 = 0.058 and s/2 = 1.032. The 
curved fibre composite with s/2 = 0.10 can be exten- 
ded up to 9.23% of its original length only by the 
straightening of the fibre, if the matrix stiffness is 
negligible. 
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Figure 16 Geometrical relationships between a/2, s/2 and 0 . . . .  
where 0~,~ is the maximum angle between the fibre and x-axis [1]. 

Two kinds of arrangements of the curved fibres in 
the composite are considered, the iso-phase model and 
random-phase model. The iso-phase model is defined 
by Fig. 17, where all the fibres are in the same phase 
in the x-direction. The distance between the fibres in 
the y-direction is assumed to be constant. In the ran- 
dom phase model (Fig. 18), the axial locations of 
sinusoidal shaped fibres do not assume any regular 
pattern. 

5.2. Axial tensile behaviour 
The non-linear tensile stress-strain behaviour of flex- 
ible composites containing curved fibres is inves- 
tigated according to the iso-phase and random-phase 
models. The lamination theory developed in Section 2 
is used for this purpose. The applied load is parallel to 
the axes of the sinusoidally-shaped fibres. 

5.2. 1. Iso-phase model 
The linear elastic stress-strain relations are derived 
first. Consider Fig. 17; each volume element between 

J 
z 

Figure 17 Iso-phase model [1]. 
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Figure 18 Random-phase model [1]. 
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x and x + dx is approximated by a unidirectional 
straight fibre composite, in which fibres are inclined at 
an angle 0 to the x-axis, as defined by Equation 85. 
The transformation of coordinates between the com- 
posite reference axes (xyz)  and the fibre local axes 
(LTz)  is given by: 

( ! )  l c o s 0  sin0 ) (  ) / 0 x 

SO cos 0 (92) = - 0 y 

0 1 z 

The positive direction of 0 is defined in Fig. 17. The 
strain-stress relations for the unidirectional straight 
fibre composite, referring to the LT system, are given 
by Equations 12 to 15. Under the uniaxial tension, ax, 
Equations 32 gives 

e~ = Snax  (93) 

ey = Slzax (94) 

])xy ~"  S16 o x  (95) 

It is interesting to note the stretching-shear coupling 
represented by S,6. Fig. 19 shows schematically the 7~e 
induced by an applied stress ax for glass/polybutylene 
terephthalate (PBT) composite. 

The average tensile strain of the iso-phase com- 
posite, e*, is 

1 
e* = ~ f~ e~ dx (96) 

From Equations 85 and 93 to 95 we obtain 

(1 + (c/2)Sn /'1 + (3/2)c ) 
~ :  = ( l  -~- C) 3/2 - -  \-(1-+ ~ 1 $22 

r 
(2S12 + $66)~ a~ (97) + (1 + c) 3/2 / 

Figure 19 Schematic illustration of the deformed shape of the iso- 
phase model under uniaxial tension a~, for a glass/PBT composite 
[1]. 



The effective Young's modulus of the iso-phase model 
in the x-direction is given by 

- [1 + 3c - (1 + c)3/2]$22 

c } 
-+- ~ (2S12 + 566 ) (98)  

In a small volume element between x and x + dx, 
the tensile strain of the fibre along its axial direction is 
expressed by 

~L = COS20 ex "}- sing0 ~y + sin 0 cos 0 7v (99) 

Substituting Equations 93 to 95 into Equation 99, and 
averaging over S, we have: 

1 t's 
= -- Jo eL e~ s 

ds 

= [(S~, - S,2)F(k)  + S,2]G (100) 

where 

F(k )  lk2  3 k 4  3 k 6  111 k8 
= 1 -- ~ -- -- 204---~ 

141 
--  - -  k I~ ( 1 0 1 )  

4096 

Here, the relations between s, x and 2, Equations 85 to 
90, and the elliptic integral are used in the derivations. 

5.2.2. Random phase model 
In the case of the iso-phase model, the stretching- 
shear coupling constants S~6 and $26 do not vanish. 
This coupling effect could be eliminated through 
the random positioning of curved fibres along the 
x-direction. 

y = a sin [2~(x - d)/2] (102) 

where d is the translation of the fibre in the x-direction. 
A random distribution of d(0 ~< d ~< 2) is assumed in 
this model. That is, in each infinitesimal section 
(x ~ x + dx), the fibres with any arbitrary orienta- 
tion angle exist with the same probability. Therefore, 
it is assumed that e~ is uniform throughout the sample 
under uniaxial tension. The stress in a fibre segment 
depends on its orientation, 0 

2~a 2ha 
- - - ~  <~ tanO ~< 2 (103) 

By these assumptions, the classical laminate theory 
can again be applied. 

The stress-strain relations of  a unidirectional lam- 
ina consisting of straight fibres are given by Equation 
16 with the reduced stiffness Qig given by Equations 17 
to 20. The transformed stress-strain relations of an 
off-axis lamina, referring to the xy  coordinate system 
are given by Equations 25 to 31. The small element of  
the random-phase composite situated between the sec- 
tions at x and x + dx is treated as a laminate with 
different orientations. The fibres with the orientation 
angle 0 which lies in the range defined by 

27za 2~x 2~a 2~(x + dx) 
~ - c o s  --~- ~< tan 0 ~< T cos 2 

(I04) 

have the probability dx/2. 

Therefore, the stress-strain relation of the laminate 
can be rewritten as 

O'y = 

Txy 

where 

c *  c *  c~, I \ ~ . 1  

( lO5)  

C ~  1 f~ = -~ Q,,,(O) dx  (106) 

The average stiffness constants of Equation 106 are 

C* - (1 + c )  3/2 Qll  l + + (QI2 + 2Q66)c 

+ Q22 [(1 + c) 3/z - (1 + 3c)]} (107) 

, { C* - (1 + c) 3/2 Q' '[(1 + c) 3 / 2 -  (1 + 3c)] 

C* - (1 + c) 3/2 (Ql, + Q22-  4Q66) 

+ Q12[(1 + c) 3n - c]} (109) 

C* - (1 + c) 3n (Q'' + Q22 - 2Q,2 - 2Q66) 

+ Q66[(1 + c) 3/2 - c]} (110) 

C~6 = C~6 = 0 (111) 

Inversion of Equation 105 leads to 

7 v 0 S~6 % 

where 

Sl*l = ( C ' C * -  C*2)/D (113) 

S* = * * -  (C,, C~6 C*2)/D (114) 

S ~ =  * * -  * * (C~6 C~6 C,2C~6)/D (1 t5) 

S~ = ( C ' C *  - C*2)/D (116) 

D C* * * c~*2r* = C~2 C66 (117) - -  '~12 "66 

Following Equations 13 to 15 the Young's modulus 
and Poisson's ratio in the x-direction of the random- 
phase model are given by 

E*  = 1/5" (118) 

* * (119) Y@xy ~" - -  512/Sl l  

If the random-phase model is subjected to uniaxial 
tension, G,  the strain components are 

G = G / E *  (120) 

ay = - (v;~y/E~, )G  (121) 

7~y = 0 (122) 
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The Strain of  the fibre in its axial direction is calculated 
by substituting Equations 120-1'22 into Equation 99 
and averaging over S (Equation 100) 

e* = (ex - ey)F(k) + ~, (123) 

where F(k)  is given by Equation 101. 

5.2.3.  N o n - l i n e a r  tensi le  s t ress -s t ra in  
b e h a v i o u r  

The non-linear axial (x-direction) tensile stress-strain 
behaviour of the flexible composite is examined using 
the stepwise incremental analysis of Petit and Wad- 
doups [42]. Consider an incremental tensile strain, 
Ae~, applied on either the iso-phase or random-phase 
model. Here, Aex = All1; Al and I are the incremental 
length and the current length, respectively. Using the 
initial Young's modulus, E*, the first stress increment, 
A~r~, is ca/culated by the linear elastic equation 

Aa~ = E*Aex (124) 

where E* is given by Equations 98 and 118 for the 
iso-phase and random-phase models, respectively. 
The nth stress increment is added to the previous stress 
state after n - 1 increments to determine the current 
total stress. 

(r = (Ox)._, + (Acre). (125) 

For the iso-phase model, the average tensile strain 
increment of the fibre along its axial direction. Ae~, is 
given by substituting Equation 124 into Equation 100 

AeL* = [(S,, - S12)F(k) + S,2]Acr. (126) 

For the random model, the transverse strain increment, 
Ae~,, is determined from Aex and v*y 

zXey = - v*yAex (127) 

Then, the tensile strain increment of the fibre is cal- 
culated by substituting Aex and Aey into Equation 123 

ke* = (Ae, - Aey)F(k) + Ae e (128) 

The total strain, referring to the current specimen 
length, after n increments is 

ex = ~ Ae~ = ~ - ~  (129) 
i=1 i=1 

Replacing Al by the infinitesimal increment, dl, we 
obtain 

= fi0 lnl0 = ln(1 + ex) (130) Cr 

Here, ex is the tensile strain referred to the initial 
specimen length,/0: 

I - I o  
e~ - (131) 

In the range of large strain, the use of e~ is more 
convenient than the summation of Aex. From Equation 
130 

~ = exp (ex) - 1 (132) 

Then, the total strain, after the nth increment, in the 
axial direction (e~), transverse direction (gy) and in the 

7 7 4  

fibre (e*) are given by 

(ex),, = exp ~ Aey - 1 (133) 

(~y), = exp Aey - 1 (134) 

(e*), = e x p ( ~ [ A e ~ ) -  1 (135) 

Finally, the change of fibre shape under loading 
needs to be taken into account. Owing to the tensile 
loading in the x-direction, the wavelength of the 
curved fibre is changed to 

)~ = 20(1 + ex) (136) 

where 2 and 2 o are the current and initial values of the 
wavelength, respectively, and the total strain, e~, is 
given by Equation 133. The current value of the fibre 
length is 

s = %(1 + e*) (137) 

where So is the initial fibre length and e* is the total 
fibre strain given by Equation 135. In order to deter- 
mine the shape of the fibre, it is assumed that the fibre 
maintains a Sinusoidal waviness during deformation 
while varying its amplitude, a, and wavelength, 2. The 
current value of the amplitude, a, can be determined 
from Fig. 16 from the given current values of 2 and s. 
The values of k 2 = el(1 + c), c = (27ra/2) 2, E* and 
v.*y after the nth step are determined from the current 
values of 2 and a, and these values are used in the 
(n + l)th step of the incremental analysis. Equations 
~25 and 133 give the uniaxial tensile stress/strain 
relation of the flexible composite. 

5.2.4.  N u m e r i c a l  e x a m p l e s  
The elastic constants of fibres [3] and matrices [4] used 
in the numerical calculations are shown in Table I. 
Linear elastic stress-strain relations are assumed for 
glass and Kevlar fibres. Rubber elasticity [43, 44] is 
assumed for PBT and the other elastomeric polymers 

= T " - 7  (138) 

where Em ~ is the initial Young's modulus of the matrix, 
and ~ is the extension ratio 

c~ = 1 + e, (139) 

The secant Young's modulus of the matrix, Era, is deter- 
mined from the current tensile strain, e x (Equations 
133 and 139) 

E m -  dex 1 + 7 (140) 

TABLE 1 Elastic constants and elongations [43, 44) 

EL E-r GLT VLT Vrr % (%) 
(GPa) (GPa) (GPa) 

Glass fibre 72.52 29.7 0.22 4 
Kevlar 151.6 4.13 2.89 0.35 0.35 3.5 
PBT matrix 2.156 0.77 0.4 50-300 

Isotropic relation G = E/2(I + v) is assumed. 
% = slrain at break. 



x 
3 

x 
x 

# X/// f/ / "  x 

I I II /  ~ / l I 

I I I / /  ir 

I I /1 /  i I / I  I l �9 

/ I I  z z  z I I / l  

i i  . " - I / 

/ / / / / !  

0 5 I0  15 

Stra in (%) 

Figure 20 Comparison of the effects of ( - - - )  glass and ( ) 
Kevlar fibres in an iso-phase composite at various E ~ Rubber 
elasticity is assumed for the matrix. (x) Average fibre axial tensile 
strain, e* reaches 4% and 3.5% for glass and Kevlar fibres, respect- 
ively. V m = 0.4, V r = 50%, a/2 = 0.1 [1]. 

Numerical  examples o f  the stress-strain relations 
predicted by the incremental analysis are shown in 
Figs 20 and 21. The results indicate that  Kevlar  is less 
effective than glass fibre in contr ibut ing to the stiffness 
o f  curved fibre composites,  because the transverse 
Young ' s  modulus  o f  Kevlar  is lower than that  o f  glass. 
After  the curved fibres are stretched, however, Kevlar  
becomes increasingly more effective to the stiffness 
and strength (Fig. 20). For  a given curved fibre com- 
posite, the r andom phase model  predicts higher 
Young ' s  modulus  and lower elongation than those o f  
the  iso-phase model  (Fig. 21). 
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Figure 21 Tensile stress (ax)/strain(G) curves of Kevlar/PBT 
polymer composites predicted by using the iso-phase ( ) and 
random-phase ( - - - )  models. Em ~ = 1 GPa, v m = 0.4 and Vf = 
50%. (x) Average fibre axial tensile strain, s* reaches 3.5% [1]. 
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Figure 22 Comparisons between theoretical predictions and experi- 
mental data of transverse tension of an iso-phase model. Specimen 
initial a/2 = 0.05 to 0.07 and Vf = 1.337% for Thornel-300/ 
silieone-elastomer composites. (A) Specimen 1, (11) specimen 2, 
a/2 = ( ) 0.03, ( - - )  0.05, ( - - - )  0.09. 

5 .3 .  T r a n s v e r s e  t en s i l e  b e h a v i o u r  
The transverse tensile behaviour  o f  curve fibre com- 
posites is analysed for both  iso-phase and random-  
phase models. The lamination theory is the basis o f  
the incremental  analysis [45]. 

5.3. 1. Iso-phase model 
Consider the small volume element situated between y 
and y + dy in the iso-phase model  as shown in 
Fig. 17. It  is assumed that  the transverse stress, ay, is 
uniformly distributed along one wavelength 2. Then 
an element o f  the size dydx can be treated as an 
off-axis unidirectional lamina. F r o m  Equat ion  32 and 
plane stress condition,  the strain components  devel- 
oped in this element are 

8 x = 812 Oy , 8y = 822Gy , 7xy = S 2 6 ~ y  (141) 

Then the transverse strain averaged over t h e  
wavelength o f  the iso-phase model  is 

1 " 
e* = ~ ;~ 8y dx (142) 

The effective Young ' s  modulus  in the y direction is 

E ~  _ Oy 8" 
I F -  

= ( 1 - I - C ) 3 / 2 / [ ( ( 1  + C) 3/2 - -  1 - -  3 c )  S l l  
I t - .  

+ 1 + $22 + ~ (2S,2 + 866 ) (143) 

Following the approach  of  Section 5.2.1, the average 
tensile strain along the fibres due to transverse tension 
is obtained by substituting Equat ion 14! into Equat ion 
99 and averaging over the length s. 

8* : [(Sl2 - S~i)F(k) + S~,]Gy (144) 

F(k) is given by Equat ion  101. 
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Kuo et al. [45] also analysed the transverse tensile 
behaviour based upon the constant strain assumption. 
This assumption is validated by the observation 
during transverse tension experiments that the elonga- 
tion of the specimen is uniform throughout its width 
away from the specimen ends. Although the constitu- 
tive relations are not of the same form for constant 
stress and constant strain analyses, the numerical cal- 
culations in [45] yield the same result. This is the direct 
consequence of the approaches, namely, the stress (or 
strain) is considered in the average sense along the 
x-direction. 

5 .3 .2 .  R a n d o m - p h a s e  m o d e l  
The transverse Young's modulus and minor Poisson's 
ratios are given by 

E* = 1/S~ (145) 

Vy* = - S~2/$2z (146) 

Under the transverse stress, ay, the strain components 
are 

ex = -- (v*x/E*) Cry (147) 

ey = ay/E* (148) 

7~y = 0 (149) 

Again, the average tensile strain along the fibre is 
obtained from Equation 123. 

5.4. Experiments 
The experimental material system reported by Kuo 
et aL [45] is based upon Sylgard 184 silicone elastomer 
reinforced with Thornel - 300 carbon fibre. A loose 
fibre bundle contains 1000 filaments, with a filament 
diameter of 7 #m. The matrix properties are given in 
Table II. The specimen fabrication technique follows 
that given in [46]. 

Fig. 22 depicts the comparison between theoretical 
curves and experimental data of an iso-phase model 
under transverse tension. The initial a/2 values of the 
specimens are in the range 0.05 to 0.07. The fibre 
volume fraction is very low, i.e. 1.337%. 

6. Non- l inear  elastic behaviour- f in i te  
deformat ion 

The incremental analysis of Section 5 is based upon 
the assumption of superposition of infinitesimal linear 
elastic deformation. Thus, the technique should be 
considered as an approximation. The general non- 
linear theory of anisotropic material has been studied 
previously [47, 48]. However, in the treatment of non- 
linear problems, difficulties often arise in the analyti- 
cal determination of the response function [49]. In 

T A B L E  II  Measured properties of  S Y L G A R D  184 silicone 
elastomer [45] 

Initial Young 's  modulus,  E ~ (MPa) 1.7 
Shear rigidity, G (MPa) 0.582* 
Poisson's ratio, v 0.46 
Max imum breaking strain (%) 50-100 

*Isotropic relation G = E/2(1 + v) is assumed. 
e b = strain at break. 

some of the existing composite analyses, the non- 
linear stress-strain curves in the principal material 
directions are determined experimentally. A number 
of methods and various response functions have been 
adopted to represent these curves [17, 49-51]. How- 
ever, the geometric non-linearity, which is important 
in the analysis of flexible composites, is not empha- 
sized in these studies. The influence of the geometric 
change of fibres has been summarized and studied by 
the theory of ideal fibre-reinforced material [52]. 
There, the kinematic constraints are substituted for 
the material stress-strain relations by assuming that 
the fibres are inextensible. 

In order to treat the finite deformation problem, 
Luo and Chou [46] has developed a constitutive 
model based upon the Eulerian description. The 
material non-linear stress-strain relation including the 
stretching-shear coupling is derived by using the stress 
energy density referring to the deformed volume. The 
geometric non-linear behaviour, due to fibre reorien- 
ration is analysed through an iterative calculation 
procedure. The analytical predictions of finite elastic 
deformations for lyre cord/rubber and Kevlar/silicone- 
elastomer flexible composite are compared with 
experimental data. 

6.1. Eulerian strains and finite deformation 
Both the Lagrangian and Eulerian descriptions have 
been used in the theory of finite elasticity [53]. The 
strain tensor associated with the Lagrangian system 
(Lagrangian strain, E~) is known as Green's strain 
tensor. The strain tensor associated with the Eulerian 
system (Eulerian strain, eij) is known as Almansi's 
strain tensor for large deformation and Cauchy's 
strain tensor for infinitesimal deformation. 

In a rectangular Cartesian coordinate system xi, the 
Eulerian strains are expressed as 

eij = 1 /2 (u i , j  + uj, i - -  u~,iu~.y) (150) 

where ui denotes the displacement in the xi direction. 
In the two-dimensional case 

ell  = 1F(a., Y (151) 
ax, 2 L\ax,/ + \F~,x,/ J 

(152) 
e22 - gx2 2 Lkax=/ + kax=/  l 

l(au, au2 a.,a.,  u2au=  
e~2 = ~ \ax2 + ax~ axl ax2 axj ax2J 

(153) 

For a composite lamina under finite deformation, 
the fibre orientation generally deviates significantly 
from its initial position. The Lagrangian description 
of such deformation is considered first. In Fig. 23a, the 
initial fibre orientation is at an angle 00 with respect to 
the x-axis. The Cartesian coordinates l - t  coincide with 
the initial principal material directions; namely, l and 
t are along the fibre and transverse directions, respec- 
tively. Under loading, the rectangular element ABCD 
is changed into a quadrilateral element A'B'C'D'. 
There is an angle A0 between AD and A'D'. Corre- 
sponding to this change, the current fibre orientation 
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td body 

Figure 23 A rectangular element of  composite 
lamina before and after loading, referring to (a) the 
Lagrangian system, (b) the Eulerian system. 

(a) 

~t 

l 

,e 

dAformed body 

(b) 

fibre 

l '  is at an angle 0 with respect to the x-axis, and 

0 = 00 + A0 (154) 

The change of fibre orientation not only alters the 
geometric configuration of the lamina, but also the 
elastic properties with respect to the initial coordinate 
system. All these effects need to be considered for the 
prediction of  the stress-strain relation. Thus, it is very 
cumbersome to investigate such changes based on the 
Lagrangian system. 

In the analysis of Luo and Chou [46], the Eulerian 
description is adopted, and the rectangular element 
A 'E 'F 'D '  in the deformed body of Fig. 23b is con- 
sidered. The sides A'D'  and A'E'  coincide with the 
Cartesian coordinates l '-t ' ,  with l '  referring to the 
current fibre direction. Thus, the quadrilateral ele- 
ment AEFD corresponds to the rectangular element 
A 'E 'F 'D '  in the undeformed state. One may assume 
that the rectangle A 'E 'F 'D '  undergoes two stages of  
deformation in being restored to its initial shape 
AEFD. These stages are illustrated in Fig. 24. First, 
A 'E 'F 'D '  becomes a smaller rectangle A"E"F"D" by 
removing the normal stresses; then it reverses to 
AEFD by removing the shear stress. Obviously, 7~2 
is the angular deviation from a right-angle in the 
undeformed lamina between two intersecting line ele- 
ments which coincide with the coordinates l '- t '  in the 
deformed lamina. 

The deformations depicted in Fig. 24 can be related 
to the Eulerian strain components. Let the line ele- 

ments AD = d/o and AE = dt0 in the undeformed 
lamina (Fig. 24c); also define A'D'  = dl and A'E'  = 
dt in the deformed lamina (Fig. 24a). Then, the physi- 
cal significance of the Eulerian strains can be explained 
as  

( d / )  2 - (d/o)  2 

(dl) 2 

(d/) 2 - (d/o) 2 

(dr) 2 

= 2ell (155) 

-- 2e22 

2ej2 

(156) 

sin ?~2 = [(1 - 2e,,)(1 - 2e=)] '/2 (157) 

Here, the subscripts 1 and 2 refer to the l '  and t '  
directions, respectively. Let the axial "engineering 
strain" be defined as 

d l -  d/0 
g I = 

d/0 

Then, it follows that 

el = (1 - 2el1) -1/2 - 

and 

(158) 

1 (159) 

e,, = [1 - (1 + g,)-2]/2 (160) 

6.2.  Cons t i t u t ive  re la t ions  
Luo and Chou [46] considered the stress energy per 
unit area of  the deformed lamina, and adopted the 
following polynomial expression for the plane-stress 

777 



EV 

A' 

E "  

,ll 
A "  

;i 

% 

d/  I D' 

% 

I, 
D" 

(,,) 

(b) 

E F 

~ t ~ d t o  (e) 
A dl  ~ D 

Figure 24 Illustration of  the deformation of a unidirectional rec- 
tangular element in the Eulerian system. 

complementary energy function in the Eulerian sys- 
tem, in terms of 0-1,002 and 00~. 

W* = (1/2)81100~ + (1/3)S,1~a~ + (1/4)Sml00~ 

+ S,20-~0-2 + (1/2)$2200:: + (1/3)$2220-~ 

+ (1/4)822220- 4 + (1/2)$6600:6 
2 2 + (1/4)$66660-46 + 31660-1003 + $22660020-6 

(161) 

Again, the subscripts 1 and 2 refer, respectively, to the 
/'~and t' directions in Fig. 23b. Also, the short-handed 
notations are used, namely, 0-1 = 00,, 002 = 0-'22, and 
006 = 0-12. Sij, Sijk and Sijkl are the compliance constants. 

By using the relation 

~W* 
(162) 

e i - -  630- i 

the following constitutive equations for the rectan- 
gular element A ' E ' F ' D '  (Fig. 24) in the Eulerian sys- 
tem are obtained. 

e 1 = Sl l0"  1 ""t- S l l l  0"2 -I- Sl1110- ~ -I- $120- 2 'it- S1660- 2 

(163) 

e 2 = $220- 2 ~- $2220022 -~- $22220- ~ 7 t- S12001 

+ 2 8 2 2 6 6 0 - 2 a  2 '  (164) 

e 6 = 866 0-6 -}- 866660- 3 -}-281660"tO" 6 -/- 2822660020-6 

(165) 

Here e~ = ell,e2 = e22,:and e6 =.2e~2. The choice of 
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compliance constants in Equation 161 is made on' the 
following basis. First, the terms S , ,  $22, $12 and $66 
are needed for the linear deformation. Second, the 
terms $1. and $222 are adopted for representing the 
bimodular behaviour in the axial and transverse direc- 
tions, respectively. Third, the non-linear terms are 
given by Sl~jl, $2222 and 86666. Lastly, the greatest 
uncertainty involves the coupling terms between the 
normal and the shear deformations. Unlike in rigid 
composites, the coupling effects may not be negligible 
in flexible composites. Two terms, $166 and 32266 , a re  
retained to represent the interactions between axial 
and shear deformations. 

Equations 163 to 165 are similar to Hahn and Tsai's 
expressions [49] in their mathematical forms. How- 
ever, there are some basic differences: (a) the strains 
on the left-hand side of Equations 163 to 165 are 
Eulerian strains; (b) the stresses on the right-hand side 
of these equations act on a rectangular element in the 
deformed body; and (c) the coordinates l ' - t '  depend 
on the deformation, and the configuration of this 
element in the undeformed body is initially "unknown". 

The compliance constants in Equations 163 to 165 
can be determined experimentally. The second-order 
constants ($1~, $22, $12 and $66) are based On linear 
theory. The other constants are obtained by fitting the 
theoretical curves with experimental data. For example, 
when al -~ 0 and 0-2 = 0"6 = 0, Equation 163 becomes 

el = Sllal + 31110~ S[llla~ (166) 

The nonlinear 0-1-e~ curve can be obtained from 
simple experiments. Then, Sll is obtained from the 
initial slope of  the experimental curve (i.e. $11 = 1/ 
Young's modulus). S.1 (which reflects bimodular 
behaviour) and $1111 are determined by fitting the 
theoretical curves to both tension and compression 
experimental data. The shear and stretching-shear 
coupling terms can be obtained from off-axis tensile 
tests with various initial fibre orientations, and the 
stress-strain relation expressed in terms of the x - y  
coordinate system in the general form. 

[e] -- [S*][0-] (167) 

Details of  [S*] can be found in [46]. 

6.3. Reor ien ta t ion  of  f ibres  
The fibre reorientation due to finite deformation has 
been predicted as follows. First, the angles DAD'  and 
EAE' are defined as c( and fl, respectively, in Fig. 23b. 
Then, 

AO = (e + //)/2 + (c~ - //)/2 (168) 

(e + //)/2, the symmetric part of A0, equals ~/12/2. 

From Equation 157 

I 2e~2 1 ( 1 6 9 )  712 = s in-1 [(1 - 2en)m(1 - 2e22) 1/2 

where, e . ,  e22 and e12 can be determined from 
Equations 163 to 165. (e - fl)/2, the antisymmetric 
part of  A0, is defined as co. It is understood that o) is 
the rigid body rotation, which is independent of the 
coordinate system but dependent on the boundary 



Figure 25 Off-axis specimens of  elastomeric composite laminae (a) without loading, (b) with loading. The 150 specimen is a tyrecord/rubber 
composite, and the 10 ~ and 30 ~ specimens are Kevlar/silicone composites. 

conditions. Then Equation 168 can be rewritten as 

A0 Yt2 (170) = ~ - + ~ o  

From Equations 154, 167 and 170, the current strains 
and fibre orientations can be determined by an itera- 
tive calculation technique [46]. The determination of 
co is demonstrated in Section 6.5. 

6.5. Numerical examples 
Luo and Chou [46] performed numerical calculations 
for (1) unidirectional off-axis laminae and (2) a lamina 
with sinusoidally shaped fibres. Uniaxial loading is 
applied (i.e. axx r O, ayy = axy = 0). The total 
Eulerian strains and the current fibre orientation are 
calculated from Equations 154, 167 and 170 by an 
iterative trial-and-error technique. 

6.4. Experiments 
6.4:1. Materials, fabrication and tests, 
Experiments have been conducted by Luo and Chou 
[46] to study the non-linear elastic behaviour of com- 
posites under finite strain. Two types of flexible com- 
posites are selected' for the experimental work. One is 
the tyre cord/rubber sheet widely used in the tyre 
industry. The other is Kevlar-49/silicone-elastomer 
laminal The fibre material used in the fabrication is 
Kevlar-49, 1420 denier (1 denier = 19/9000m) with 
1000 filaments in a yarn. The resin is Sylgard 184 
silicone elastomer. The resin is transparent and has an 
elongation up to 100%. 

The unidirectional composite laminae are made by 
a frame winding method [54]. The curing process is 
performed in air or in an autoclave. The procedure of 
making flexible composite laminae with wavy fibres is 
basically the same as that for making unidirectional 
fibre laminae, except that the pre-coated fibres are 
pressed by a mould to form a pre-designed shape. 
Then, these wavy fibres are aligned and embedded in 
the resin. 

Luo and Chou [46] performed longitudinal, trans- 
verse, and off-axis tensile tests on unidirectional fibre 
specimens. For wavy fibre specimens, only longitudi- 
nal properties are measured. The measurement of 
large strain is performed using extensometers with a 
single-point edge knife for the unidirectional fibre 
specimen, and a photographic method for the wavy 
fibre specimens. 

The experimentally determined elastic properties of 
tyre cord/rubber and Kevlar/silicone-elastomer are 
listed in Table III. 

6.5. 1. Unidirectional off-axis laminae 
The elastic properties of the experimental materials 
are given in Table III. Figs 25a and b are photographs 
of the off-axis specimens without and with loading, 
respectively. Fig. 25b shows that the central lines of 
specimens remain straight under loading. Thus, the 
rigid body rotation in Equation 170 can be expressed 
as  

co _ Z~y (171) 
2 

where Yxy is the angular deviation from a right-angle in 
the undeformed lamina between two line elements 
which coincide with the coordinates x -y  in the 
deformed lamina. From Equation 157 

~xy = sin-' 1 - 2exx)l/2(1 - 2eyy) '/2 (172) 

Fig. 26 shows the comparisons between analytical 
predictions and experimental results for off-axis 

T A B L E I I I Elastic properties of  elastomeric composite laminae 

Tyre cord/rubber Kevlar-49/elastomer 
(Vf = 9%) 

S n (MPa) i 0.165E-3 0.114E-3 
Suu (MPa) -3 0 0 

$12 (MPa) -~ - 65,9E-6 - 69.9E-6 
$22 (MPa) -1 0,121 0.306 
$2222 (MPa) -3 51.4E-3 0.563 
$66 (MPa) 1 0.408 0.387 
$6666 (MPa)-3 0.183 77.5E-3 
$166 (MPa) -2 0.131E-3 3.43E-6 
S2266 (MPa) 3 0.469 56.3E-3 
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Figure 26 Comparisons between ( - - )  theoretical curves and 
(- - -) experimental results on 15 ~ 30 ~ and 60 ~ off-axis stress-strain 
responses oi" tyrecord/rubber composite laminae. 

responses of tyre cord/rubber composites. The fibre 
initial orientations are i 5 ~ 30 ~ and 60 ~ The maximum 
strains are over 6%. The same comparisons for 
Kevlar-49/silicone-elastomer specimens are shown in 
Fig. 27. The fibre initial orientations are 10 ~ 30 ~ and 
60 ~ in this case. Good correlations have been found. 

6.5.2. Flexible composite specimens with 
wavy fibres 

Fig. 28 illustrates the deformations of a flexible com- 
posite sample with wavy fibres under different levels of 
loading. Fig. 29 is a photoelastic view of a flexible 
composite sample under longitudinal loading, which 
shows that relatively uniform strain is maintained in 
distinct regions along the x-axis. 
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Figure 27 Comparisons between ( ) theoretical predictions and 
( - - - )  experimental results on 10 ~ 30 ~ and 60 ~ degree off-axis 
stress-strain responses of Kevlar-49/silicone-elastomer composite 
laminae. 

The deformation of this flexible composite is best 
understood by examining a representative element of 
the wavy fibre which contains a half-wave of the sinu- 
soidal curve (Fig. 30). This element can be divided into 
sub-elements along the x-axis. Then, its longitudinal 
deformation is the summation of the deformations of 
all of these sub-elements. Luo and Chou [46] divided 
the fibre element into three regions along the x-axis 
denoted by AB, CD and BC. In the regions AB and 
CD, the fibre segments are considered to be parallel to 
the x-axis. Let AB + CD = a. In the region BC, the 
fibre is assumed to have an average inclination angle 
of 00 with respect to the x-axis in the initial state; also 
BC = b. Then, the overall "engineering strain" of the 
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Figure 28 Photographs of a flexible composite lamina 
.sample (graphite/silicone-elastomer) with sinusoidally 
shaped fibres for loads at (a) 0 kg, (b) 6 kg, and (c) 20 kg. 



Figure 29 The photoelastic view of a flexible com- 
posite lamina (graphite/photostress material PL-2) 
with sinusoidally shaped fibres. 

specimen in the x-direction is 

e,. = ea[a/(a + b)] + eb[b/(a + b)] (173) 

Here, e, is the strain in the AB and CD regions, which 
is obtained from Equations 159, 160 and 167 by 
setting 0 = 0. eb is the average strain of the region BC, 
which is treated as an off-axis lamina. Referring to 
Equation 158, eb is defined as 

L c o s 0  - L0cos00 

c~ = L0 cos 0 o 

cos 0 
(174) 

(1 - 2ell)l/2(cos 00 - 1) 

where L and 0 are respectively, the instantaneous 
values of L0 and 00. 

In this wavy fibre composite, the central line of the 
specimen does not remain straight under loading, but 
the lines BB' and CC' remain perpendicular to the 
x-axis as shown in Figs 28 and 29. Thus 

co - Yxy (175) 
2 

Fig. 31 shows the theoretical and experimental relation 
of longitudinal stress, ax versus average strain, ~x of the 
flexible composite specimens. The initial fibre orienta- 
tion angle 00 in the off-axis part BC is in the range of 
19 ~ to 28 ~ Thus, the average value 00 = 23.5 ~ has 
been assumed. The theoretical curves are obtained for 
00 = 19 ~ 23.5 ~ and 28 ~ The experimental strain 
values Ofex are obtained by the photographic method. 
The agreement between theory and experiment is 
good. 

6.6. Compar ison w i t h  other theor ies 
Recently, Luo and Chou [55] developed an alternative 
modelling technique based upon the Lagrangian 
description. In this work the constitutive equations for 
flexible composites are derived based upon a strain- 
energy density expression which is assumed to be a 
function of the Lagrangian strain components refer- 
ring to the initial principal material coordinates. 

Fig. 32 shows a comparison of the three theoretical 
approaches discussed in this review and based upon 
the Lagrangian description (theory 1), Eulerian 
description (theory 2) and the incremental analysis 
(theory 3). Experimental data are from the Kevlar/ 
silicone system given in Section 6.4. The theoretical 
predictions appear to be more sensitive to the models 
at lower stress level. 

7. C o n c l u d i n g  r e m a r k s  
This review article examines three types of flexible 
composites: cord/rubber composites, coated fabrics, 
and composites composed of wavy fibres. The follow- 
ing observations and conclusions are pertinent. 

1. The lamination theory is adequate in describing 
the linear elastic stress-strain relations of flexible com- 
posites under small deformation. 

2. The incremental analysis based upon super- 
positions of infinitesimal deformation can be used to 
approximate the non-linear elastic stress-strain rela- 
tion of flexible composites. The validity and limitation 
of this approach should be assessed with care. 

3. The non-linear theories of Luo, Rivlin and Chou 
based upon either the Eulerian or Lagrangian descrip- 
tion appear to be most powerful in predicting the finite 
deformation of flexible composites. 

1 ~  

A B C D 

Figure 30 The original shape of a wavy fibre in a flexible 
composite specimen. 
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Figure 31 Stress a x plotted against overall average strain, ex for a 
flexible composite specimen with wavy fibres. (A) Specimen 1, (O) 
specimen 2, ( ) theory. 

4. The better understanding of the behaviour of 
flexible composites requires the further development 
of (i) experimental techniques for monitoring large 
deformation, (ii) analytical technique for predicting 
inelastic behaviour, and (iii) modelling of damage and 
failure behaviour in general. 

5. The stiffness, elongation to failure, energy 
absorbing capability, etc., of flexible composites can 
be tailor-made to suit specific applications through the 
judicious selection of fibre and matrix material sys- 
tems and the design of fibre geometric configurations. 

30 

~" 2O 

0"1 
ffl 
lal 
e e  

io f f 

i 
s t 

I 

0 ~ 3 6 9 

STRAIN (%) 

Figure 32 Stress (load/original cross-section area)-strain (increment 
in length/original length) relations of Kevlar-49/silicone-elastomer 
composite containing sinusoidally shaped fibres for a/2 = 0.09. 
Theory 1 ( ) Lagrangian description; theory 2, ( ) Eulerian 
description; theory 3, ( - - - )  incremental analysis, (A), (o) experi- 
mental results. 
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Further optimization of composite performance 'can 
be achieved through fibre and/or matrix hybridization. 

6. The potential of flexible composite applications 
in load-bearing structures, biomedical components, 
and robotics.; just naming a few, is not fully realized. 
With the advent o f  analytical techniques, further 
innovative applications of flexible composites are 
feasible. 
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